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by Diabetic Retinopathy Study
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2School of Mathematical Sciences, Beijing Normal University, Beijing, China

Multivariate failure time data are commonly encountered in biomedical research since
each study subject may experience multiple events or because there exists clustering of
subjects such that failure times within the same cluster are correlated. In this article, we
use the frailty approach to catch the related survival variables and assume each event is
a discrete analog as an interval of clinical examinations periodically. For estimation, an
Expectation–Maximization (EM) algorithm is developed and is applied to the diabetic
retinopathy study (DRS).

Keywords EM algorithm; Frailty models; Interval-censoring; Multivariate failure time
data.

Mathematics Subject Classification 62N01.

1. Introduction

This article discusses the fitting of the frailty model to multivariate interval-censored data.
One field in which interval-censored failure time data frequently occur is medical follow-
up studies, and in these cases, each study subject is commonly examined or observed
periodically. In this situation, an individual due to the pre-scheduled observations for a
clinically observable change in disease or health status may miss some observations and
return with a changed status. Accordingly, we only know that the true event time is greater
than the last observation time at which the change has been observed not to occur, thus giving
an interval that contains the real time of occurrence of the change. Goggins and Finkelstein
(2000) presented a set of bivariate interval-censored data arising from an AIDS clinical
trial on HIV-infected individuals. Kim and Xue (2002) discussed an ongoing clinical trial
involving subjects with systemic lupus erythematosus. Chen et al. (2007) and Tong et al.
(2008) developed the marginal model approach for multivariate interval-censored failure
time data using the proportional odds model and the additive hazards model, respectively.
Wang et al. (2008) discussed efficient estimation for bivariate current status data. Also
Komarek and Lesaffre (2007) gave a Bayesian approach for correlated interval-censored
data.
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Among these, two types of models have been proposed: frailty models and marginal
models. Frailty model approach specifies the within-cluster correlation that allows for joint
inference about the survival times within a cluster. Marginal models leave the correlation
unspecified, but modify for the correlation by using sandwich-type estimators for the
variance. Clayton and Cuzick (1985) extended the proportional hazards model and included
a random effect representing heterogeneity of subjects. Oakes (1989) considered the frailty
model for bivariate failure time data. Duchateau and Janssen (2008) pointed out that a
drawback of the lognormal frailty distribution is that the Laplace transform does not take a
simple form and hence the dependence imposed by the lognormal distribution is difficult to
evaluate. In this article, our interest focused on survival prediction for interval-censored data
under the Cox proportional hazards frailty model (Hougaard, 2000) and we use the frailty
approach to catch the multi-events in an individual subject. Multi-events of the interval
censoring from each individual share a common frailty random variable, which accounts
for the within-individual correlation. Compared with the marginal model approach, one
advantage of the frailty model approach is that it directly models the correlation of failure
times. For estimation of the frailty model approach, an EM algorithm is developed (Klein,
1992).

We first present models and assumptions in Section 2. Section 3 discusses estimation
of unknown parameters by maximizing the log-likelihood function of the pseudo-complete
data. For this procedure, we use the EM algorithm. The EM algorithm iterates between
an expectation and maximization step. The resulting estimates of regression parameters
are consistent and asymptotically normally distributed. For the covariance matrix of the
estimated parameters, a robust estimate is given that takes into account the correlation of
the survival variables. In Section 4, some simulation results are presented and indicate that
the presented inference approach works well for practical situations. We apply the approach
to the diabetic retinopathy study (DRS) in Section 5. Section 6 contains some discussion.

2. Model and Assumptions

Consider a survival study that involves K possibly correlated failure times (T1, . . . , TK ).
Suppose that the Tk’s can be observed only to belong to one of J different intervals given by
or each study subject is observed only at J time points 0 = t0 < t1 < t2 < · · · < tJ <

tJ+1 = ∞. For each subject, assume that there is a vector of covariates Xik associated
with the failure time Tik, i = 1, . . . , n, k = 1, . . . , K . In the following, we assume that
there exist K latent variables bi1, . . . , bik for each subject and given bik and Xik, the hazard
function of Tik has the form

λik(t) = λ0k(t)eX′
ikβ+bik , (1)

where i = 1, . . . , n, λ0k(t) denotes an unknown baseline hazard function, k =
1, . . . , K , and β denotes vectors of regression parameters. That is, Tik follows the pro-
portional hazards frailty model. The simplest model is assuming the baseline survival
functions for Tk’s are the same as well as the covariates’ effects on them. In contrast,
allowing the baseline survival functions for Tk’s is different and considering the effects of
covariates on Tk’s may be the same or different. The methodology given below still applies
if covariate effects differ for Tk’s as one can simply produce a common β through the in-
troduction of extra type-specific covariates (Guo and Lin, 1994). For inference about β, we
assume that only interval-censored data about the Tk’s are available and they have the form
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{ (Lik, Rik] , Zi ; i = 1, . . . , n, k = 1, . . . , K } . In the above, (Lik, Rik] denotes the inter-
val within which the kth failure of the ith subject is observed to occur. (Lik, Rik] is general
or case II interval-censored data (Huang and Wellner, 1997; Sun, 2006) for the kth failure of
the ith subject Tik. Here we use the convention that Lik = Rik means that we have an exact
observation on the kth failure time of the ith subject and Rik = tJ+1 = ∞ means that the
observation on Tik is right censored. In the following, we assume that {Lik , Rik} ⊆ {tj }
and define αikj = 1 if (Lik, Rik] contains tj and αikj = 0 otherwise, j = 1, . . . , J + 1,
k = 1, . . . , K , i = 1, . . . , n. Considering of the model which is denoted as the lognor-
mal frailty model, we will assume that the latent effect b = (b1, . . . , bK )′ follows a joint
normal distribution with mean zero and covariance matrix � and given b, T1, . . . , TK are
independent.

Under model (1), the probability Tk is observed to belong to the jth interval (tj−1, tj ]

and is given by Pkj = e−�0k(tj−1)eX′
k
β+bk − e−�0k(tj )eX′

k
β+bk , where �0k(t) = ∫ t

0 λ0k(s)ds, the
unknown baseline cumulative hazard function. The �0k’s subject to 0 ≤ �0k(t1) ≤ · · · ≤
�0k(tJ ). In practice, it is convenient to eliminate the parameter range restriction by defining
�km = �0k(tj ) − �0k(tj−1) and γkj = log �kj , j = 1, . . . , J , k = 1, . . . , K . Let γk =
(γk1, . . . , γkJ )′ and γ = (γ ′

1, . . . , γ
′
K )′. Then the likelihood contribution from a single

subject has the form

L∗(θ ; O∗) =
∫ K∏

k=1

{
αk1 +

J∑
j=1

(
αk(j+1) − αkj

)
e−∑j

a=1e
γka e

X′
k
β+bk

}
f (b; �)db, (2)

where θ = (β,�, γ ) notates all unknown parameters, O∗ = (αkj ,Xk) the observed data,
and f (b; �) the density function of the normal distribution with mean zero and covariance
�. From (2), one can easily show that the conditional density function of b given O∗ has
the form

f (b|O∗, θ ) = 1

L∗(θ ; O∗)

K∏
k=1

{
αk1 +

J∑
j=1

(
αk(j+1) − αkj

)
e−∑j

a=1e
γka e

X′
k
β+bk

}
f (b; �). (3)

In the next section, we discuss the estimation of regression parameters β along with other
parameters.

3. Parameter Estimation

Suppose that the observed data Oi, i = 1, . . . , n are n iid copies of O∗. Then, we rewrite (2)
into the full likelihood function as L(θ ; O) = ∏n

i=1 L∗(θ ; Oi). To estimate θ , one needs to
maximize L(θ ; O). It is apparent that there is no closed form and there exists unobservable
latent variables b’s. It is a natural approach to apply the EM algorithm and treat b’s as
missing values.

3.1. E-Step

To describe the E-step, note that the pseudo-complete data consist of two parts: the observed
data Oi and the missing data bi = {bik}Kk=1, i = 1, . . . , n. The E-step asks to write out the
likelihood function of the pseudo-complete data and then to compute the expectation of the
resulting log-likelihood with respect to the conditional density function of b given O. It is
easy to see that the log-likelihood function of the pseudo-complete data can be written as
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l(θ ; O, b) = ∑n
i=1 li(θ ; Oi, bi), where

li(θ ; Oi, bi) = log f (bi ; �) +
K∑

k=1

log

⎧⎨⎩αik1 +
J∑

j=1

(
αik(j+1) − αikj

)
e−∑j

a=1e
γka e

X′
ikβ+bik

⎫⎬⎭ .

It follows that the conditional expectation of the log-likelihood has the form

l(θ ; O) =
n∑

i=1

E[li(θ ; Oi, bi)] =
n∑

i=1

∫
li(θ ; Oi, bi)f (bi |Oi, θ )dbi

with θ set to be θ (m) obtained at the mth iteration. It is obvious that to compute the conditional
expectation above, one requires a numerical algorithm to assess the general integral

E
(
h(bi)|Oi, θ

(m)) =
∫

h(bi)f
(
bi |Oi, θ

(m))dbi

for any function h(bi) of bi .
For the determination of E(h(bi)|Oi, θ

(m)), we have

E
(
h(bi)|Oi, θ

(m)) = E[ψ(bi ; θ (m),Oi)h(bi)]

Eψ(bi ; θ (m),Oi)
,

where ψ(bi ; θ (m),Oi) = ∏K
k=1{αik1 + ∑J

j=1(αik(j+1) − αikj )e−∑j
a=1e

γka e
X′

ikβ+bik } . This sug-
gests that for sufficiently large L, the expectation E(h(bi)|Oi, θ

(m)) can be approximated
by

E(h(bi)|Oi, θ
(m)) � Ê(h(bi)) =

∑L
l=1ψ(bil ; θ (m),Oi)h(bil)∑L

l=1 ψ(bil ; θ (m),Oi)
, (4)

where {bil = (bil1, . . . , bilK )}Ll=1, i = 1, . . . , n are iid samples from the K-dimensional
normal distribution with mean zero and covariance matrix, �(m).

3.2. M-Step

First, we maximize the conditional expectation l(θ ; O, b) by replacing all expectations
involving functions h(b) by their approximation Ê(h(b)) given in (4) to determine the
updated estimate θ (m+1). By taking derivatives of l(θ ; O) with respect to �, one can easily
obtain the updated estimator of � as

�(m+1) = 1

n

n∑
i=1

Ê
(
bib

′
i |Oi, θ̂

(m)). (5)

For the maximum likelihood estimator of parameters β and γ , we have

Uβ(β, γ ) =
n∑

i=1

K∑
k=1

E
[
ψ

(1)
ik (bi ; β, γk)|Oi, θ̂

(m)
]
,

Uγkj
(β, γ ) =

n∑
i=1

E
[
ψ

(2)
ikj (bi ; β, γk)|Oi, θ̂

(m)],
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where ψ
(1)
ik (bi ; β, γk) = W−1

ik Vβ,ik , ψ
(2)
ikj (bi ; β, γk) = W−1

ik Vγ,ikj ,

Wik = αik1 +
J∑

j=1

(
αik(j+1) − αikj

)[
e−e

(X′
ikβ+bik) ∑j

a=1 eγka
]
,

Vβ,ik = ∂Wik

∂β
= −Xik

J∑
j=1

(
αik(j+1) − αikj

)[
e
−e

(X′
ikβ+bik) j∑

a=1
eγka

] [
e(X′

ikβ+bik)
j∑

a=1

eγka

]
,

Vγ,ikj = ∂Wik

∂γkj

= −
J∑

s=j

(
αik(s+1) − αiks

)
e
−e

(X′
ikβ+bik) s∑

a=1
eγka

eX′
ikβ+bik+γkj .

Applying the approximation Ê given in (4) and noticing that the denomina-
tor in (4) is a constant, we obtain the working score functions as Ûβ(β, γ ) =∑n

i=1

∑K
k=1

∑L
l=1 ψ

(1)
ik (bl ;β,γk )ψ(bl ;θ (m),Oi )∑L

l=1 ψ(bl ;θ (m),Oi )
,Ûγkj

(β, γ ) = ∑n
i=1

∑L
l=1 ψ

(2)
ikj (bl ;β,γk )ψ(bl ;θ (m),Oi )∑L

l=1 ψ(bl ;θ (m),Oi )
. Then

for estimation of β and γ , one can solve the equation

Û (β, γ ) = (Ûβ(β, γ )′, Ûγ1 (β, γ1)′, . . . , ÛγK
(β, γK )′)′ = 0, (6)

where Ûγk
(β, γ ) = (Ûγk1 (β, γ ), . . . , ÛγkJ

(β, γ ))′.

3.3. Computational Algorithm

It is not easy to handle p + K × J equations in (6) simultaneously. Therefore, we suggest
the following procedure for the (m + 1)th iteration.

Step 1. Determine the updated estimate �̂(m+1) of � given in (5).
Step 2. Determine the updated estimate β̂(m+1) of β by solving Ûβ(β, γ (m)) = 0.
Step 3. For each k, determine the updated estimate γ̂

(m+1)
k of γk by solving

Ûγk
(̂β(m+1), γk) = 0, k = 1, . . . , K.

Step 4. Repeat steps 1–3 until convergence.

For the covariance estimation of the estimator of θ̂ , one can use the inverse of the
observed information matrix I (̂θ ), which is given in the Appendix. Also the distribution of
β̂ or θ̂ can be approximated by the normal distribution for large samples.

4. Simulation Study

Simulation studies were conducted to assess the finite sample performance of the proposed
maximum likelihood estimators. In the study, we considered the situation where there
exist K = 2 correlated failure times T1 and T2, and a scale covariate X1 = X2 = X taking
value 0 or 1 with probability 0.5 . The paired frailities were generated from the bivariate
normal distribution with mean zero and covariance matrix �. In the above, their correlation
ρ measures the dependence between T1 and T2 ; T1 and T2 with the hazard functions
0.1 t1 eX′β+b1 and 0.2 t2 eX′β+b2 , respectively. In the study, we took each time point tj =
j/J × τ (equally spaced partition) with J = 5 (J � n1/3) and τ = tJ . More comments
on J and the tj ’s are given in Sun (2006). At each time point, a subject is observed with
probability 1—censored rate and independent of observations at the other time points. Thus,
Lik and Rik are the actual observation times that are immediately before and after the true
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Table 1
Estimates of regression parameter β with ρ = 0

SD SD Censor
n β (b1) (b2) rate AVE ESE SSD CP

100 (0,0) 0.4 0.4 0.2 (−.009, .002) (.244, .221) (.246, .231) (.94, .95)
0.5 (−.012, −.026) (.270, .244) (.282, .244) (.94, .96)

0.2 0.2 (.007, −.008) (.245, .220) (.251, .227) (.96, .95)
0.5 (.001, −.002) (.271, .245) (.272, .255) (.95, .96)

(0.5, 0.5) 0.4 0.4 0.2 (.472, .449) (.247, .224) (.253, .233) (.94, .94)
0.5 (.481, .462) (.274, .249) (.261, .265) (.96, .93)

0.2 0.2 (.465, .501) (.247, .225) (.243, .231) (.95, .94)
0.5 (.484, .510) (.275, .251) (.271, .259) (.95, .95)

(1, 0.5) 0.4 0.4 0.2 (.955, .480) (.251, .227) (.264, .223) (.94, .94)
0.5 (.958, .476) (.281, .252) (.321, .273) (.93, .94)

0.2 0.2 (.954, .488) (.251, .227) (.264, .233) (.93, .95)
0.5 (.953, .520) (.280, .254) (.293, .267) (.93, .95)

200 (0, 0) 0.4 0.4 0.2 (−.014, .000) (.171, .155) (.177, .156) (.95, .94)
0.5 (.002, −.025) (.189, .170) (.192, .168) (.95, .95)

0.2 0.2 (.011, .011) (.172, .154) (.172, .157) (.95, .94)
0.5 (.003, −0.001) (.190, .170) (.187, .181) (.94, .94)

(0.5, 0.5) 0.4 0.4 0.2 (.481, .460) (.173, .157) (.175, .168) (.94, .93)
0.5 (.477, .445) (.191, .173) (.199, .173) (.94, .94)

0.2 0.2 (.467, .506) (.173, .157) (.173, .160) (.95, .95)
0.5 (.466, .484) (.191, .174) (.192, .194) (.96, .93)

(1, 0.5) 0.4 0.4 0.2 (.944, .464) (.175, .159) (.180, .158) (.93, .94)
0.5 (.936, .464) (.195, .176) (.187, .186) (.95, .95)

0.2 0.2 (.927, .489) (.175, .159) (.175, .162) (.94, .95)
0.5 (.920, .488) (.194, .177) (.191, .177) (.93, .94)

failure time Tik. The results given below are based on 500 replications with L = 30 for the
approximation (4) and the sample size n = 100 or 200.

To evaluate β̂, we considered a number of scenarios, and some of the obtained results
are presented in Tables 1–3. In all tables, we included the averages of the estimates β̂

(AVE), sample standard deviation of the 500 sample estimators (SSD), the average of the
500 estimated standard errors (ESE), and the coverage probability with confidence level
95% (CP). The true values of identical covariates β took 0, or 0.5, different covariates
β took 1, and 0.5, the censor rate set to 0.2, or 0.5, and the standard deviations of b1

and b2 were set to be equal (0.4, 0.4) or different (0.4, 0.2). Table 1 studied the situation
with ρ = 0, Table 2 assumed ρ = 0.25, and Table 3 assumed ρ = 0.5. One can see from
these tables that the proposed estimate β̂ seems to be unbiased and the variance estimate
is reasonably reliable as it is close to the sample standard deviation. Also the results seem
robust for different cases and especially, it is interesting to note that the variance estimates
do not seem to change much from cases with ρ = 0 to cases with ρ = 0.5. The results
also indicate that the ESEs and SSDs of β̂ increased as the censored rate increased. This is
due to the larger censored rate 0.5 corresponds to wide observed intervals for the survival
times of interest and thus means less information about the survival times. Furthermore,
as expected, both the bias and the estimated standard error decreased as the sample size
increased. In the simulation study, we also considered other set-ups such as those with
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Table 2
Estimates of regression parameter β with ρ = 0.25

Censor
n β SD(b1) SD(b2) rate AVE ESE SSD CP

100 (0,0) 0.4 0.4 0.2 (−.006, .005) (.245, .220) (.265, ,230) (.94, .94)
0.5 (.002, −.002) (.271, .244) (.274, .252) (.94, .95)

0.2 0.2 (−.027, −.002) (.245, .220) (.252, .215) (.95, .96)
0.5 (.015, −.006) (.272, .245) (.286, .260) (.95, .94)

(0.5,0.5) 0.4 0.4 0.2 (.472, .466) (.247, .224) (.255, .236) (.94, .94)
0.5 (.464, .482) (.274, .256) (.283, .257) (.95, .95)

0.2 0.2 (.453, .489) (.247, .225) (.251, .224) (.94, .95)
0.5 (.479, .531) (.274, .252) (.274, .262) (.95, .94)

(1,0.5) 0.4 0.4 0.2 (.939, .483) (.250, .226) (.255, .232) (.95, .95)
0.5 (.963, .501) (.281, .253) (.282, .269) (.94, .94)

0.2 0.2 (.944, .502) (.251, .227) (.252, .228) (.94, .96)
0.5 (.935, .504) (.278, .254) (.274, .275) (.94, .94)

200 (0,0) 0.4 0.4 0.2 (−.003, −.008) (.171, .154) (.181, 152) (.94, .95)
0.5 (−.012, .004) (.189, .170) (.193, .178) (.95, .92)

0.2 0.2 (.012,−.007) (.172, 154) (.183, .160) (.93, .94)
0.5 (.005, −.003) (.190, .170) (.183, .164) (.96, .96)

(0.5,0.5) 0.4 0.4 0.2 (.468, .471) (.173, .157) (.176, .154) (.94, .96)
0.5 (.472, .460) (.192, .173) (.201, .170) (.94, .95)

0.2 0.2 (.477, .499) (.173, .157) (.182, .157) (.93, .96)
0.5 (.471, .491) (.191, .174) (.197, .174) (.94, .95)

(1,0.5) 0.4 0.4 0.2 (.943, .469) (.175, .159) (.174, .160) (.94, .95)
0.5 (.937, .450) (.195, .176) (.193, .176) (.94, .94)

0.2 0.2 (.941, .494) (.176, .159) (.182, .159) (.93, .94)
0.5 (.949, .505) (.195, .177) (.198, .175) (.95, .95)

larger L in (4), standard deviations of b1 and b2, and J = 10 (J � n1/2). Similar results
were obtained.

A referee suggested comparing the proposed approach with a univariate approach.
To see this, we applied this univariate approach to situations considered in Table 4 and
presented the obtained results, including AVE, SEE, and SSE. It can be seen that as
expected, the approach is less efficient than the estimation procedure developed here with
higher correlation between T1 and T2.

5. Analysis of Diabetic Retinopathy Study

For illustration purposes, we applied our proposed method to the DRS (Huster et al., 1989).
The study was conducted by the National Eye Institute to assess the effect of laser photoco-
agulation in delaying the onset of severe visual loss such as blindness in the patients with
diabetic retinopathy, where 50% subsamples are the high-risk patients with n = 197. The
data were categorized into 16 intervals, {(0, 6], (6, 10], (10, 14], . . . , (58, 66], (66, 83]} (in
months). The main purpose of the study is to evaluate the outcome of laser photocoagula-
tion in delaying the time to onset of blindness in patients with diabetic retinopathy. Defined
covariates included in the analyses were type of diabetes (x1 = 0 for juvenile diabetes and
x1 = 1 for adult diabetes) and presence/absence of treatment (x2 = 0 if the patient received
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Table 3
Estimates of regression parameter β with ρ = 0.5

Censor
n β SD(b1) SD(b2) rate AVE ESE SSD CP

100 (0,0) 0.4 0.4 0.2 (.001, −.013) (.244, .220) (.224, .221) (.96, .94)
0.5 (.009, −.024) (.271, .244) (.275, .254) (.94, .94)

0.2 0.2 (−.004, .009) (.245, .220) (.264, .225) (.92, .96)
0.5 (−.001, −.002) (.271, .245) (.266, .249) (.96, .95)

(0.5,0.5) 0.4 0.4 0.2 (.474, .472) (.247, .224) (.250, .229) (.95, .93)
0.5 (.503, .470) (.273, .250) (.277, .268) (.94, .93)

0.2 0.2 (.480, .479) (.247, .224) (.251, .233) (.95, .95)
0.5 (.480, .509) (.275, .251) (.272, .267) (.95, .94)

(1,0.5) 0.4 0.4 0.2 (.925, .471) (.250, .227) (.236, .228) (.95, .94)
0.5 (.971, .479) (.280, .252) (.294, .256) (.95, .95)

0.2 0.2 (.947, .515) (.251, .227) (.244, .236) (.95, .93)
0.5 (.991, .499) (.282, .253) (.297, .250) (.94, .96)

200 (0,0) 0.4 0.4 0.2 (.002, .006) (.171, .154) (.156, .156) (.96, .95)
0.5 (.002, −.004) (.190, .170) (.197, .179) (.94. .95)

0.2 0.2 (.008, .006) (.172, .154) (.177, .151) (.94, .95)
0.5 (−.004, −.008) (.190, .170) (.187, .172) (.96, .95)

(0.5,0.5) 0.4 0.4 0.2 (.470, .470) (.173, .157) (.178, .149) (.94, .96)
0.5 (.478, .473) (.192, .174) (.192, .184) (.95, .95)

0.2 0.2 (.455, .507) (.173, .157) (.173, .154) (.95, .96)
0.5 (.492, .500) (.192, .175) (.191, .169) (.96, .95)

(1,0.5) 0.4 0.4 0.2 (.927, .487) (.175, .159) (.171, .161) (.94, .95)
0.5 (.934, .474) (.195, .176) (.201, .171) (.94, .96)

0.2 0.2 (.920, .497) (.175, .159) (.174, .162) (.94, .95)
0.5 (.925, .496) (.195, .177) (.187, .184) (.95, .95)

Table 4
Estimates of regression parameter β = (1, 0.5) with univariate approach

Censor
SD(b1) SD(b2) ρ n rate AVE ESE SSD CP

0.4 0.4 0 100 0.2 (.961, .462) (.251, .227) (.249, .232) (.95, .94)
0.5 (.940, .477) (.280, .252) (.280, .247) (.93, .95)

200 0.2 (.932, .460) (.175, .159) (.166, .149) (.93, .95)
0.5 (.942, .481) (.195, .176) (.188, .177) (.96, .95)

0.25 100 0.2 (.944, .450) (.251, .227) (.264, .221) (.93, .96)
0.5 (.908, .433) (.278, .252) (.253, .249) (.93, .94)

200 0.2 (.917, .445) (.174, .159) (.188, .172) (.92, .92)
0.5 (.887, .431) (.193, .175) (.194, .182) (.90, .93)

0.5 100 0.2 (.882, .467) (.250, .227) (.272, .254) (.93, .93)
0.5 (.889, .417) (.277, .251) (.320, .232) (.89, .96)

200 0.2 (.873, .424) (.173, .158) (.166, .136) (.92, .93)
0.5 (.905, .437) (.195, .175) (.208, .175) (.89, .96)
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no treatment and x2 = 1 if the patient was treated with laser photocoagulation). Variable
x3 along with those from Huster et al. (1989) and Ross and Moore (1999) is interaction
of two factors (x1 and x2). Among these, we considered the simplest and assumed that the
baseline survival functions for T1 and T2 as well as the covariates’ effects on them for the
eye studies are the same.

In this article, we use the proposed method, the estimates of regression parameters
are 0.364,−0.443, and −0.977. The p-values for type of diabetes (x1), treatment (x2), and
interaction (x3) are all smaller than 0.0001. The laser treatment appears to be effective; for
juvenile diabetes, their risk of failure is reduced by 36% (exp(−0.45) = 0.64) relative to
the control group. The results also indicate that the laser treatment was more effective in
the adult onset group than in those individuals with juvenile onset diabetes.

In this study, the rank for the non-right-censored survival times is missing, the midpoint
(average of lowerbound and upperbound of the interval) is used for simplicity; some authors
considered if it is possible to impute the exact survival times to each finite censored interval.
The idea behind the imputation method is to change to a more familiar or simpler model.
Our proposed method instead of dealing with prior information or data to suggest or
verify a parametric model deals with interval censoring directly. Thus, we may avoid
underestimation of the variability of point estimates (Sun, 2006).

6. Concluding Remarks

The method developed in the preceding sections applies to covariates measured at a single
point in time. The extension to time-varying covariates is also possible as long as the co-
variates are ancillary or external. Chen and Tong (2010) proposed a maximum likelihood
method with spline smoothing for varying coefficients. When a covariate interacts nonlin-
early with another, one may extend our proposed method with varying coefficients to catch
the phenomenon of the time-dependent covariates. Another question for the regression
analysis of multivariate interval-censored data is how one can choose an appropriate model
among all available models. The DRS that we discussed in Section 5 had been studies
by several authors with different approaches. All these results point out that the estimated
parameters are significant. There does not seem to exist an approach in the literature that
can be used to choose or distinguish these different models and it is apparent that the
development of such approach would be very useful.

Petroni and Wolfe (1994) considered that the survival time has a discrete distribution,
although many methods of analysis assume that it has a continuous distribution. The discrete
time scale can always be constructed from a continuous one by partitioning the time axis
into disjoint intervals. In practice, the number of intervals, J, will depend on the amount
of data available in order to maintain efficiency of the parameter estimates. It is easy to
see that for larger J, more computational effort is needed, but a better approximation is
obtained. Rossini and Tsiatis (1996) suggested the smallest integer of J above n1/4, but for
small n, one may want to choose larger J since the results may not be stable otherwise. Sun
(2006) investigated the effect of the partition or selection of tj ’s on the analysis of the lung
tumor data and the results are quite stable through different J’s.

Our proposed method provided an easy and simple way to deal with the dependence
structure for more than two correlated failure times. We do not really estimate the param-
eters of the correlation; in practices, we may only focus on regression parameters. The
performance of our proposed method is still good under there is no correlation between
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failure times. In other words, one can use our proposed method even though the data may
not exist the dependence structure or the correlation is weak.

Simulation experiments indicate that the estimates of regression parameters using the
proposed EM approach are quite robust to the initial value of the standard deviations of
frailties (SD(b1), SD(b2)), although a good initial value of frailties can certainly improve
the convergence speed. The simulation experiences show that the performance of the
estimation of frailties can be improved by increasing the sample size. In some cases, the
strength of dependence between the failure time is of biological interest, and thus further
efforts will be required in future work to provide robust inference of the standard deviations
of frailties.

In addition to the cumulative hazard function, �0k(t) belongs to a linear function space,
in some situations, it possibly prefers to use different spaces or a similar space in which
the dimension J could be infinity. In this case, a new method needs to be developed for the
estimation of covariate effects.
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Appendix: Expression of the Observed Fisher Information Matrix

I (̂θ ) denotes the observed Fisher information matrix and has the form −E( ∂2l(θ ;O,b)
∂θθ ′ |O, θ̂ ).

Then ∂2l(θ ;O)
∂β∂β ′ = ∑n

i=1

∑K
k=1 E[W−2

ik V 2
β,ik − W−1

ik Vββ,ik] , ∂2l(θ ;O)
∂γkj ∂γkj

= ∑n
i=1 E[W−2

ik V 2
γ,ikj

− W−1
ik Vγj γj ,ikj ] , ∂2l(θ ;O)

∂γkj ∂β
= ∑n

i=1 E[W−2
ik Vγ,ikjVβ,ik − W−1

ik Vγj β,ikj ], and ∂2l(θ ;O)
∂γkj ∂γkm

=∑n
i=1 E[W−2

ik Vγ,ikjVγ,ikm − W−1
ik Vγj γm,ikjm] , for j < m, where
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)(
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eγka )
,

Vγj γj ,ikj =
J∑

s=j

(
αik(s+1) − αiks

)(
e(x ′β+bk )eγkj − 1

)

×
(
e
−e(x′β+bk )

s∑
a=1

eγka )(
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)
,
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x
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)(
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,
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Vγj γm,ikjm =
J∑

s=j

(
αik(s+1) − αiks

)(
e(x ′β+bk )eγkj

)

× (
e(x ′β+bk )eγkm

)(
e
−e(x′β+bk )
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.
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